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We review severe constraints on asymmetric bosonic dark matter based on observations of old
neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic
WIMPs can be effectively trapped onto nearby neutron stars, where they can rapidly thermalize and
concentrate in the core of the star. If some conditions are met, the WIMP population can collapse
gravitationally and form a black hole that can eventually destroy the star. Based on the existence
of old nearby neutron stars, we can exclude certain classes of dark matter candidates.
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I. INTRODUCTION

Compact stars such as neutron stars and white dwarfs
can lead in general to two types of constraints regard-
ing dark matter candidates. The first one has to do with
annihilating dark matter that changes the thermal evolu-
tion of the star. Annihilation of Weakly Interacting Mas-
sive Particles (WIMPs) that are trapped inside compact
stars, can lead to the production of significant amount of
heat that can change the temperature of old stars [1–4].
Such a phenomenon can be in principle contrasted to ob-
servations. The second type of constraints is related to
asymmetric dark matter [5–12]. Asymmetric dark matter
is an attractive alternative to thermally produced dark
matter especially due to the intriguing possibility of relat-
ing its asymmetry to the baryonic one. For recent reviews
see [13, 14]. Due to the asymmetry, WIMP annihilation is
not significant in this case. If a certain amount of WIMPs
is trapped inside the star, the WIMPs can quite rapidly
thermalize and concentrate within a tiny radius in the
core of the star. If the WIMP population grows signif-
icantly, WIMPs might become self-gravitating and they
might collapse forming a mini black hole. Under certain
conditions, the black hole might consume the rest of the
star, thus leading to the ultimate destruction of the star.
However, very old (older than a few billion years) nearby
neutron stars have been well observed and studied. The
simple presence of such verified old stars leads to the con-
clusion that no black hole has consumed the star and as
we shall argue, this can lead to very severe constraints on
the properties of certain types of asymmetric dark mat-
ter. We should also mention that additional constraints
on asymmetric dark matter can be imposed on different
ways (e.g. from asteroseismology [15–17], from effects on
the transport properties of the neutron stars [18] and/or
hybrid dark matter rich compact stars [19, 20]).

One can easily figure out that fermionic WIMPs due
to the fact that they have to overcome Fermi pres-
sure, require a huge number in order to collapse i.e.

∗Electronic address: kouvaris@cp3.sdu.dk

N ∼ (Mpl/m)3 where Mpl and m are the Planck mass
and WIMP mass respectively. This number of WIMPs is
very difficult to be accumulated within a few billion years
and with dark matter densities similar to the ones of the
earth. However, this required number for gravitational
collapse is reduced significantly in the case of attractive
Yukawa forces among the WIMPs [8].

II. ASYMMETRIC BOSONIC DARK MATTER

In the case of asymmetric bosonic WIMPs, the neces-
sary WIMP number for collapse is much smaller because
there is no Fermi pressure and only the uncertainty prin-
ciple keeps particles from collapsing. The collapse takes
place once the momentum becomes smaller than the self-
gravitational potential energy.

�
r
<

GMm

r
⇔ M >

M2
pl

m
, (1)

where M = Nm is the total mass of the WIMP cloud.
A more accurate and generic estimate that includes the
effect of self-interactions gives [21]

Mcrit =
2

π

M2
pl

m

�

1 +
λM2

pl

32πm2
. (2)

Although self-interactions between WIMPs can be quite
general in nature, without loss of generality, we can as-
sume that the self-interaction can be approximated well
by a λφ4 interaction term. At the no interaction limit
λ = 0 we trivially get the critical mass mentioned above
(up to factors of order one).
The accretion of WIMPs for a typical 1.4M� 10 km

neutron star taking into account relativistic effects has
been calculated in [3]. The total mass of WIMPs accreted
is

Macc = 1.3× 1043
�

ρdm
0.3GeV/cm3

��
t

Gyr

�
f GeV, (3)

where ρdm is the local dark matter density, and the “ef-
ficiency” factor f = 1 if the WIMP-nucleon cross sec-
tion satisfies σ > 10−45cm2, and f = σ/(10−45cm2) if
σ < 10−45cm2.
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Mass accretion rate: 

f = Min [1,
σ

10−45 cm2
]where

R = 10 km. Using these standard values, we find

v � 0.7 . (3)

This implies that the energy that a typical DM particle has at the surface of a neutron star

is

E =
�
k2 +m2

χ � 1.4mχ , (4)

so we see that the scale of the incident energy of the DM particle is set by its mass and that

typical DM particles are at most semi-relativistic. These incident DM particles will scatter

with the quasi-particles inside the neutron star, lose energy, and become bound to the star.

The next step is DM thermalization with the neutron star. Since the DM particle is at

most semi-relativistic, and it must lose energy in order to be captured by the neutron star,

we will assume that the DM particle is safely non-relativistic for all thermalization time

calculations. As the DM thermalizes, it collects within a sphere of radius rth which satisfies

GM(rth)mχ

rth
≈ 3

2
T , (5)

where M(rth) is the mass of the neutron star enclosed within a radius rth and T is the

temperature of the neutron star. We can estimate this by considering a neutron star with a

constant core density ρc = 5× 1038 GeV/cm3 and we find [22]

rth ≈ 2.2 m

�
T

105 K

�1/2 �GeV

mχ

�1/2

. (6)

This tiny sphere of DM at the center of the neutron star can then begin to self-gravitate

and collapse into a black hole. Gravitational collapse can be accelerated if the captured DM

forms a Bose-Einstein condensate inside the star [16, 18, 26]. Once the black hole is formed,

it must be massive enough to avoid evaporation due to Hawking radiation and then it may

consume the neutron star. The precise experimental signature of a neutron star collapsing

into a black hole is still an interesting, open question.

In previous works, [15, 18], two calculations to constrain the DM-neutron cross section as

a function of DM mass are done: 1) the thermalization time calculation: τ = 1010 years, and

2) an accretion time calculation: τaccretion = 1010 years, in which τaccretion is the time needed
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Thermalization: 

Self-Gravitation: 

2

One can easily check thatMacc can be larger thanMcrit

practically for all masses larger than ∼ 100 keV. To form
a black hole, satisfying the condition (2) is necessary but
it is not sufficient. One should make sure that after the
WIMPs have been captured, they slow down and ther-
malize with nuclear matter concentrating within a small
thermal radius. Failing to satisfy this condition, even if
the condition (2) is satisfied, does not necessarily lead to
the formation of a black hole, since WIMPs would not be
confined in a tiny region. The thermalization time scale
has been estimated in [5] and [3]

tth = 0.2yr
� m

TeV

�2 � σ

10−43cm2

�−1
�

T

105K

�−1

. (4)

As one can observe, despite the Pauli blocked interac-
tions between WIMPs and nucleons, unless they are very
heavy, WIMPs thermalize in less than a year. Having
thermalized with nuclear matter, WIMPs concentrate in
the center of the star within a thermal radius that can
be easily obtained by use of the virial theorem

rth =

�
9kTc

8πGρcm

�1/2

= 220cm

�
GeV

m

�1/2 � Tc

105K

�1/2

,

(5)
where k is the Boltzmann constant, Tc is the temperature
at the core of the star, and ρc = 5 × 1038GeV/cm3 is a
typical value for the neutron star core density.

Once the WIMPs are thermalized and if sufficient num-
ber is accumulated in the star, there are two different
events that take place, the time order of which depends
on the WIMP mass. One is the self-gravitation of the
WIMP sphere and the second is the formation of a Bose
Einstein condensate (BEC). Self-gravitation takes place
once the mass of the WIMP sphere inside the thermal
radius becomes larger than the mass of the neutron star
within the same radius. In other words, this happens
once WIMPs start feeling strongly their own gravita-
tional field. For this to happen the WIMP sphere should
have a mass that satisfies

Msg >
4

3
πρcr

3
th = 2.2× 1046 GeV

� m

GeV

�−3/2
. (6)

On the other hand, BEC formation takes place once the
WIMP number density is

nBEC � 4.7× 1028cm−3
� m

GeV

�3/2
�

Tc

105K

�3/2

. (7)

One can easily check that for WIMPs roughly lighter
than 10 TeV, the accumulated WIMPs within rth meet
first the condition for BEC formation. We are going
to study these two cases (m < 10 TeV and m > 10
TeV) separately since events unfold with different order.
For WIMPs lighter than 10 TeV, one can estimate that
the total number of WIMPs needed to form a BEC is
NBEC � 2 × 1036. Any accumulated WIMPs on top of

this number goes directly to the ground state of the BEC
state. The radius of the BEC state is

rBEC =

�
8π

3
Gρcm

2

�−1/4

� 1.6× 10−4

�
GeV

m

�1/2

cm.

(8)
As it can be seen, rBEC << rth and therefore WIMPs in
the ground state can become self-gravitating much faster
than what Eq. (6) predicts. In fact we can appreciate
this if we substitute rth by rBEC in Eq. (6). This leads
to the condition

M > 8× 1027 GeV
� m

GeV

�−3/2
. (9)

If Eqs. (2),(7), and (9) are satisfied, a black hole is going
to be formed. Once the black hole is formed, its fate is
determined by its initial mass Mcrit. One the one hand,
the black hole is accreting dark matter and nuclear mat-
ter from the core of the star. This tends to increase the
black hole mass. On the other hand, emission of photons
and particles in general via Hawking radiation tends to
reduce the mass of the black hole. The black hole mass
evolution is determined by

dM

dt
=

4πρcG2M2

c3s
− f

G2M2
, (10)

where cs is the sound speed at the core of the star, and
f is a dimensionless number that in general depends on
the number of particle species emitted and the rate of
rotation of the black hole. We have used a spherically
symmetric Bondi accretion of matter into the black hole.
By inspection of Eq. (10) it is apparent that there is a
critical value of the black hole massM above which accre-
tion always wins, while below, Hawking radiation reduces
the mass of the black hole which in turn it increases even
further the rate of Hawking radiation leading eventually
to the evaporation of the black hole. This critical mass
has been estimated if one considers only photons in [6]

M > 5.7× 1036 GeV. (11)

The mass becomes slightly larger [10] if one includes also
other species that can be emitted (e.g gravitons, neutri-
nos, quarks, leptons etc). Comparison of Eq. (2) (with
λ = 0) to Eq. (11) shows that WIMP masses larger than
16 GeV lead to black hole masses below the limit of
Eq. (11). This means that for masses larger than 16
GeV, black holes evaporate and their effect is to heat up
the star as they evaporate. However this does not lead to
a dramatic effect like the destruction of the star. This 16
GeV mass limit becomes slightly smaller if more Hawking
radiation modes are included.
Finally there is one last constraint that should be sat-

isfied. WIMP masses cannot be arbitrarily small because
for small WIMP masses, after WIMPs have thermalized,
those in the tail of the Maxwell-Boltzmann distribution
have large enough velocities to escape from the star.
This evaporation effect can be ignored for WIMP masses

rth ≈ meters

r N
S
≈

10
km

Bose Einstein Condensation: BEC

rBEC ≈ 10−4 cm
MBEC > 8× 1027

�
GeV

m

�1.5
GeV

For a concise recent review see Kouvaris (2013)



Black-hole Formation 
Idea:  Asymmetric bosonic dark matter can induce the  collapse of the 
NS to a black hole.    Goldman & Nussinov (1989)

This idea has 
been explored in  
more detail by: 

• Kouvaris and Tinyakov (2011)
• McDermott, Yu and Zurek (2012)
• Kouvaris (2012) & (2013)
• Guver, Erkoca, Reno, Sarcevic (2012) 
• Fan, Yang, Chang (2012)
• Bell, Melatos and Petraki (2013)
• Jamison (2013) 
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FIG. 1: Exclusion regions of the asymmetric bosonic dark
matter as a function of the WIMP mass and the WIMP-
nucleon cross section for an isolated neutron star at local DM
density ρdm = 0.3GeV/cm3 (such as J0437-4715 and J0108-
1431) and for a neutron star in the core of a globular cluster
with ρdm = 103GeV/cm3.

m > 2 keV [6]. If the accreted dark matter mass within
a billion years Macc is larger than Mcrit of Eqs. (2), and
(7), (9), and (11) are satisfied, the WIMPs form a black
hole that can destroy the star. There are some subtle is-
sues regarding how fast the black hole consumes the star
that have been addressed to some extend in [6]. The con-
straints on asymmetric bosonic dark matter are depicted
in Fig. 1. As it can be seen, depending on the WIMP-
nucleon cross section, WIMP candidates from 100 keV up
to roughly 16 GeV are severely constrained by the exis-
tence of nearby old neutron stars. The constrained region
is bound at 100 keV due to the fact that below that mass
accretion is not sufficient to acquire Mcrit from Eq. (2).
These constraints can be enlarged down to 2 keV (the
limit from WIMP evaporation we mentioned before) as
long as we consider old neutron stars in globular clusters
with ρdm � 30 GeV/cm3.

Now we can consider the case where the WIMP mass
is larger than 10 TeV and therefore self-gravitation of
the WIMP sphere happens before BEC formation. As
we mentioned above, black holes of critical mass (2) with
WIMP masses roughly larger than ∼ 16 GeV, do not
survive due to Hawking radiation. Therefore one should
expect that black holes of Mcrit (of Eq. (2)) formed out
of 10 TeV WIMPs (or heavier) would evaporate quite
fast. However, since self-gravitation takes place before
BEC, and the self-gravitating mass of Eq. (6) for m > 10
TeV is much larger than the crucial mass for the survival
of the black hole of Eq. (11), there were speculations in
the literature [7, 9, 10] that constraints can be imposed
also for m > 10 TeV. The claim was that instead of
forming a black hole of Mcrit that is below the surviving
threshold for Hawking radiation, a much larger black hole
coming from the collapse of the self-gravitating WIMP
sphere Msg forms, that due to its larger mass can grow

and destroy the star, thus imposing constraints on this
part of the parameter space of asymmetric bosonic dark
matter. However we review here the argument that was
put forward in [23] that demonstrates that the formation
of smaller (non-surviving) black holes of mass Mcrit is
unavoidable and therefore the Msg instead of collapsing
to a single large black hole, it forms a series of black holes
of Mcrit that evaporate one after the other, thus resulting
to no constraint for WIMP masses with m > 10 TeV.

In order for the WIMP sphere to collapse,
the whole mass should be confined within the
Schwarzschild radius rs = 2GM of the black hole.
The density of WIMPs just before forming the
black hole would be nBH ∼ 3(32πG3M2

sg
m)−1 ∼

1074 cm−3(GeV/m)(Msg/1040GeV)−2. It is easy to see
that this density is higher from the density required for
BEC formation of Eq. (7). This means that unless the
WIMP sphere collapses violently and rapidly, it should
pass from a density where BEC is formed. As the self-
gravitating WIMP sphere of mass Msg contracts, at some
point it will reach the density where BEC is formed. Any
further contraction of the WIMP sphere will not lead
to an increase in the density of the sphere. The density
remains that of BEC. The formation of BEC happens
on time scales of order [22] tBEC ∼ �/kBT ∼ 10−16s,
i.e. practically instantaneously. Further shrinking of
the WIMP sphere results in increasing the mass of the
condensate rather than the density of non-condensed
WIMPs. This process happens at a time scale which is
determined by the cooling time of the WIMP sphere as
discussed below. As we shall show, this cooling time
is the relevant time scale for the BEC formation. As
in the previous case, the ground state will start being
populated with WIMPs which at some point will become
self-gravitating themselves. This of course will happen
not when Eq. (9) is satisfied. Eq. (9) was derived
as the WIMP ground state becomes denser than the
surrounding nuclear matter (since the dark matter that
is not in the ground state of the BEC is less dense).
Here, the condition is that the density of the ground
state of the BEC should be larger than the density of the
surrounding dark matter (that is already denser than
the nuclear matter at this point). The condition reads

MBEC, sg =
4π

3
nBECmr3

BEC
= 9.6×1021GeV

� m

10TeV

�−7/8
.

(12)
Once the BEC ground state obtains this mass, the ground
state starts collapsing within the collapsing WIMP
sphere. Any contraction of the WIMP sphere does not
change the density of the sphere but only the density
of the ground state. MBEC, sg is smaller than Mcrit and
therefore the BEC ground state cannot form a black hole
yet. However as the ground state gets populated at some
point it reaches the point where its mass is Mcrit and this
leads to the formation of a black hole of mass Mcrit and
not Msg. The evaporation time for such a black hole of

Existence of old neutron 
stars with estimated ages 
~ 1010  years provide 
strong constraints on 
asymmetric DM.  

Kouvaris (2013)



DM Scattering in the Neutron Star Core 

Initial scattering is hard. Typical initial 
DM energy and momentum are large.  Einitial ∼ 1.4 m

pinitial ∼ m

As the DM looses energy it becomes 
increasingly soft.  Typical energy and 
momentum transfer become 
comparable or smaller than 
characteristic scales in dense matter.   

DM scatters off many-
particles in the medium. 
Interference between 
scattering off different target 
particles is important. 
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Theorists View of  the Neutron Stars Interior 
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Correlations in Dense Matter and DM scattering 
•Fermi Statistics (Pauli Blocking) 
•Screening and Fermi Liquid Effects
•Multiple scattering suppression (Landau- Pomeranchuk-Migdal effects)
•Cooper Pairing and superfluid suppression.    

Using a specific model of Asymmetric DM we study a few of these effects:
Bertoni, Nelson, Reddy (2013) in prep. 

for the neutron star to accrete enough DM to form a black hole which will destroy the star,

assuming thermalization occurs in a negligible amount of time. The second calculation sets

the final constraint, and the first is used to find regions where the second constraint is not

valid. In this paper we will consider only the first calculation and its application to the

particular class of DM models to be discussed next.

III. GENERIC DARK MATTER MODEL

For a complex scalar DM particle which couples to regular matter by exchanging some

heavy spin one particle, we can write down an effective Lagrangian for the interaction

between DM and the fermions (nucleons, electrons, etc.) that are found in neutron stars:

Lint = G̃�µ (j
µ

V
+ αjµ

A
) , (7)

where �µ = ∂µχ†χ − χ†∂µχ is the DM current for a complex scalar, jµ
V
= ψ̄γµψ and jµ

A
=

ψ̄γµγ5ψ are the vector and axial vector currents for the fermions, and α is the coupling of

jµ
A
to the mediator divided by the coupling of jµ

V
to the mediator. For simplicity we take

α to be the standard model value for fermions coupling to the Z boson. G̃ is the coupling

constant after the heavy mediator has been integrated out. In general,

G̃ =
gχgVψ
M2

H

, (8)

where MH is the mass of the heavy mediator particle, gχ is the coupling of the mediator to

�µ, and gVψ is the coupling of the mediator to jµ
V
.

Such an effective theory is well-justified. In order for the effective theory to capture the

relevant physics, one needs that the magnitude of the four-momentum transfer squared, q2,

is much less than M2
H

in the DM-fermion scattering processes. Based on the arguments in

the previous section we know that the initial DM energy is at most 1.4mχ and hence the

maximum q2 that the DM can give up is |q2
max,DM

| ≈ 4m2
χ. Since the fermions inside the

neutron star are highly degenerate, scattering events in which the DM gains energy and

momentum from them are rare and have typical
�
q2 ∼ T ∼ 9 eV << mχ for the DM

masses we are considering. Note that we will always take mχ � 1 keV as it was shown in
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DM Scattering in Many-Body Theory

fermion spins and is given by

�|M|2� = 2G̃2
�
(1 + α2) [2 (p� · (k + k�)) (p · (k + k�))− (p� · p)(k + k�) · (k + k�)] (10)

+ (1− α2)
�
m2

f (k + k�) · (k + k�)
��

, (11)

where we have used the notation a · b ≡ aµbµ with the mostly minus metric and mf is the

fermion mass which could be the neutron or the electron mass, mn or me respectively. Using

the finite temperature optical theorem, the scattering rate can also be expressed as [27–29]

Γ = −2G̃2 1

1− e−q0/T

�
d3k�

(2π)3
Im[LµνΠR

µν ]

2Eχ
k 2E

χ
k�

, (12)

where Lµν contains the DM currents and ΠR
µν is the fermion retarded polarization tensor.

For non-interacting fermions, these are given by

Lµν = (k + k�)µ(k + k�)ν and (13a)

Im
�
ΠR

µν

�
= Im

�
− i tanh

� q0
2T

�

×
�

d4p

(2π)4
Tr[G(p)(γµ + αγµγ5)G(p+ q)(γν + αγνγ5)]

�
, (13b)

where G(p) is the free fermion propagator at finite temperature and density. The form for

this polarization tensor has been worked out in detail in [29] and [30] and we use their results

in our calculations. (If using the derivation in [29] note [31].)

The polarization tensor, ΠR
µν , characterizes the medium response to the DM probe. The

fermion propagators contain the Pauli blocking factors (c.f. the factor of nF (Ef
p )(1−nF (E

f
p�))

in (9)) which restrict the fermion phase space due to the Pauli exclusion principle, i.e. the

incident fermion that interacts with the DM particle must come from the initial fermion

distribution and the scattered fermion must occupy phase space that is not already filled by

the initial fermion distribution. The polarization tensor also contains information about the

in-medium fermion-fermion interactions since ΠR
µν is a fermion current-current correlation

function which includes a sum over all possible intermediate states.

Given an expression for the scattering rate ((9) or (12)), we can now define a discretized

version of the thermalization time, τ , based on the physical reasoning that the average
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FIG. 3: Comparison of effective suppression factors in the DM-neutron scattering rate for
roughly thermal DM (E = 3T ) and a non-interacting Fermi gas of neutrons.

of the U(1) symmetry associated with fermion number [37, 40].

For neutrons in the core of the neutron star the dominant attractive interaction is in the

p-wave channel and is expected to lead to the formation of spin-triplet Cooper pairs [35].

Model calculations predict that the energy gap, ∆3P2 , is roughly 0.01−0.1 MeV, though this

remains somewhat uncertain [41]. The condensate of these pairs is expected to be spatially

anisotropic and Goldstone bosons associated with the breaking of rotational invariance arise

in addition to the Goldstone boson from the spontaneous breaking of fermion number [42].

Since in our model, DM couples only to the neutron density in the non-relativistic limit (in

(13a), Lµν → 4m2
χδµ0δν0), the only relevant excitation at energies small compared to the gap

is the Goldstone boson, or superfluid phonon, associated the breaking of the U(1) fermion

number symmetry.

The superfluid phonon manifests as a spike in the density-density neutron response func-

tion (∼ Im[ΠR
00], c.f. (13b)) at q0 = csq, where cs is the speed of sound in the neutron

medium. Based on this, we can make an ansatz for the neutron response function:

S(q0, q) = Nδ(q0 − csq) , (31)
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all momentum dependence in the amplitude (10) and rewriting the scattering rate we find

Γ ≈ 2G̃2

�
d3k�

(2π)3
S(q0, q) , (18)

where qµ = (q0, �q) = kµ − k�
µ is the four-momentum transfer and q = |�q|. S(q0, q) is the

neutron response function, here given by

S(q0, q) =

�
d3p

(2π)3

�
d3p�

(2π)3
(2π)4δ4(pµ + kµ − p�µ − k�µ

)nF (E
n
p )

�
1− nF (E

n
p�)

�
, (19)

where nF (E) = [1+e(E−µ)/T
]
−1

is the Fermi-Dirac distribution function. Additionally in the

limit of completely degenerate neutron matter (in reality µn/T ∼ 6.5× 10
6
so the neutrons

really are quite degenerate) and for q << mn, we have [29]:

S(q0, q) ≈
m2

nT

2πq

�
z

1− e−z

�
Θ(qvF − |q0|) , (20)

where z = q0/T , Θ is the Heaviside step function, and vF = pF/mn ≈ 0.35 is the neutron

Fermi velocity.

Note that the step function is just enforcing non-relativistic, low momentum transfer

neutron kinematics, i.e. that |q0| < vF q. That this inequality holds can be seen simply from

q0 = En
p� − En

p =

�
m2

n − (�p+ �q)2 −
�
m2

n + p2 =
pq cos θ

En
p

+O

�
q2

En

�
, (21)

where θ is the angle between �p and �q. These neutron kinematics must be consistent with

the same non-relativistic, low momentum transfer DM kinematics (|q0| < vχq) and since

vχ ≤ 1/3 always by construction, the DM kinematics constrain the phase space more and

the neutron step function can simply be set to 1. These kinematics are shown in Fig. 1.

Using (20) in (18), setting e−z
to zero as the thermalization time definition always has

q0 > T and completing the angular integrals gives

dΓ ≈ G̃2m2
n

4π3
k�2q0

�
k + k� − |k� − k|

kk�

�
dk� . (22)

Since the neutrons are approximated as completely degenerate, DM cannot lose energy to
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where 

and  z =
q0
T
, vF =

kFn

mn

Thermalization time:

Setting k0 = mχ/3, using kn =
�
4mχT to match to numerical calculations, and enforcing

τ ≥ 1010 years gives the final result for G̃(mχ). Our numerical and analytic results are

shown in Fig. 2.

FIG. 2: Plot of the DM-neutron cross section for DM interacting with a Fermi gas of

neutrons. Shaded regions are where DM takes longer than 1010 years to thermalize. Lines

labeled with different values of ρχ (the DM density around a neutron star–note [39])

indicate upper bounds on the allowed DM-neutron cross section as a function of DM mass

due to neutron stars accreting enough DM to form a black hole as computed in [18].

In order to compare with analytic expressions from previous works [18, 22], we neglect

k−4
0 with respect to k−4

n in (26) and insert (17) into the expression to obtain

τ ≈ 105π2

16mnσT

γ

(1 + γ)2
, (27)

where γ ≡ mχ/mn. To get a feel for typical scales, this can be recast as

τ ≈ 3750 yrs
γ

(1 + γ)2

�
2× 10−45 cm2

σ

��
105 K

T

�2

, (28)

which is generically longer than previous calculations by several orders of magnitude.

From Fig. 2 one can see that the results obtained in this work differ appreciably from those

in previous works–in particular some regions of DM parameter space that were disallowed
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B. Scattering with a Fermi Gas of Neutrons

From nucleon-nucleon scattering data we know that the neutron-neutron interaction can

be either attractive or repulsive depending on the spin and spatial angular momentum of the

neutrons and on the neutron density [36]. At sufficiently low temperature, attractive inter-

actions can lead to superfluidity and dramatically alter the low-lying excitation spectrum,

and hence the DM scattering mechanism–we discuss this in detail in the next section. Here,

to calculate DM-neutron scattering, we will ignore nuclear interactions and approximate the

neutrons by a dense, non-interacting Fermi gas. This will provide a baseline result since

we know from Fermi-liquid theory that corrections due to strong interactions in the normal

phase do not qualitatively change the nature of scattering or the kinematics [37]. From

earlier work, relating to neutrino scattering in dense, normal neutron star matter [38], we

expect that the DM scattering rates in the Fermi gas approximation are sufficient to provide

a reliable order of magnitude estimate.

The fiducial calculation is done for neutrons at saturation density (n0 ≈ 0.16 fm
−3
)

which corresponds to a non-relativistic neutron chemical potential of µn ≈ 0.056 GeV. This

implies that neutrons at saturation density are to a good approximation, non-relativistic.

Deep in the core, neutrons become mildly relativistic and but these relativistic corrections

are modest. We calculate the thermalization time and then enforce τ = 10
10

years, which

gives a constraint of the form G̃ as a function of mχ. We then use this constrained coupling

constant in the formula for the DM-fermion cross section in the limit in which both the

DM and fermion momenta tend to zero (a good approximation of what takes place in direct

detection experiments):

σDM−f =
G̃2

π

m2
fm

2
χ

(mf +mχ)
2
. (17)

This gives the DM-fermion cross section as a function of DM mass alone, with the constraint

that DM thermalization takes longer than 10
10

years.

For non-interacting neutrons it is simplest to use expression (9) for the scattering rate in

the calculation of the thermalization time. Eqn. (9) was used for numerical calculations and

an approximate analytic result was obtained as follows. For thermalization time scatterings

it is a good approximation that both the neutrons and DM are non-relativistic, so neglecting

9

where γ =
mχ

mn
and  

Earlier estimates found that : 
Goldman & Nussinov (1989)
Kouvaris and Tinyakov (2011)
McDermott, Yu and Zurek (2012)

τ � 10−5 yrs
� m

GeV

�2
�
2× 10−45cm2

σ

� �
105 K

T

�



FIG. 1: Plot of the magnitude of the momentum transfer as a function of energy transfer,
both in units of T, for momentum transfers much less than the mass and momentum of the
particle involved. The shaded areas show kinematically allowed regions. The lined region is

for initial DM (with vχi = 0.7), the green, shaded region is for neutrons, and the
cross-hatched region is for final DM (with vχf << vχi after the DM has lost energy to the
neutrons). DM-neutron scattering can take place in the kinematic regions where the DM

and neutron regions overlap.

them, hence k� ≤ k and using q0 = k2/(2mχ)− k�2/(2mχ), we find

dΓ ≈ G̃2m2
n

2π3k
k�2

�
k2

2mχ
− k�2

2mχ

�
dk� . (23)

We can now use this to calculate the denominator in (16):

�
dΓ(Ei)(Ei − Ef ) =

�
dΓ(Eχ

k )(E
χ
k − Eχ

k�) ≈
G̃2m2

n

2π3k

� k

0

k�2
�

k2

2mχ
− k�2

2mχ

�2

dk� . (24)

Integrating gives �
dΓ(Ei)(Ei − Ef ) ≈

G̃2m2
n

105π3m2
χ

k6 . (25)

Using this in (16) we find

τ ≈ 105π3mχ

4G̃2m2
n

�
1

k4
n

− 1

k4
0

�
. (26)
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Kinematic Constraints

Kinematics is quite 
restricted when DM 
velocity becomes small. 

vχ � vFWhen

only a small fraction of 
neutrons respond.

Setting k0 = mχ/3, using kn =
�
4mχT to match to numerical calculations, and enforcing

τ ≥ 1010 years gives the final result for G̃(mχ). Our numerical and analytic results are

shown in Fig. 2.

FIG. 2: Plot of the DM-neutron cross section for DM interacting with a Fermi gas of

neutrons. Shaded regions are where DM takes longer than 1010 years to thermalize. Lines

labeled with different values of ρχ (the DM density around a neutron star–note [39])

indicate upper bounds on the allowed DM-neutron cross section as a function of DM mass

due to neutron stars accreting enough DM to form a black hole as computed in [18].

In order to compare with analytic expressions from previous works [18, 22], we neglect

k−4
0 with respect to k−4

n in (26) and insert (17) into the expression to obtain

τ ≈ 105π2

16mnσT

γ

(1 + γ)2
, (27)

where γ ≡ mχ/mn. To get a feel for typical scales, this can be recast as

τ ≈ 3750 yrs
γ

(1 + γ)2

�
2× 10−45 cm2

σ

��
105 K

T

�2

, (28)

which is generically longer than previous calculations by several orders of magnitude.

From Fig. 2 one can see that the results obtained in this work differ appreciably from those

in previous works–in particular some regions of DM parameter space that were disallowed

12

Still, thermalization 
occurs in the less than 
1010 years  even for  
relatively small cross-
sections  > 10-52 cm2.   



Nucleons are Frozen 

1S0 : n

1S0 : p

3P2 : n

10 km

12 km

11.5 km

?

Solid

Solid + Superfluid

Superfluid + 
Superconductor 

Theory predicts that neutrons will form 
spin-triplet Cooper pairs and protons 
form spin-singlet pairs 

Nucleons cannot be excited below the 
gap. 

∆ � 0.1− 1 MeV

FIG. 4: Plot of DM and neutron superfluid kinematically allowed regions. The neutron

superfluid region includes a kinematic region for the phonon mode as well as one for

neutron-pair interactions which begins at q0/T ∼ 10
3
on this scale. If DM is travelling at a

speed larger than the speed of sound in the neutron superfluid, the DM and neutron

superfluid kinematic regions overlap and scattering can occur. However after DM scatters

and loses energy, its speed decreases and the DM and neutron superfluid kinematic regions

no longer overlap and no more scattering can occur.

way as the neutron-DM scattering in section IVB. Roughly 7% of a neutron star is made

up of electrons and for neutrons at saturation density, electrons have a chemical potential of

µe ≈ 0.12 GeV, indicating that the electrons are highly relativistic with the Fermi velocity

vF ≈ 1. Since DM is non-relativistic, its dominant coupling is to the electron density but

the kinematics differs qualitatively from the neutron case in Fig. 1 because vF ≈ 1 and

DM-electron scattering is always kinematically allowed.

The electron response function to leading order in the velocity of the DM particle is given

by

S(q0, q) =

�
d3p

(2π)3

�
d3p�

(2π)3

�
(2π)4δ4(pµ + kµ−p�µ − k�µ

)(1 + cos θ) (33)

× nF (E
n
p )

�
1− nF (E

n
p�)

� �
, (34)
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S(q0, q) =
π nn

2mnc2s
q0 δ(q0 − cs q)

Low-energy nucleon response is solely 
due to the excitation of Goldstone 
bosons (superfluid phonons)

DM-nucleon scattering is negligible when 

vχ < cs



DM - Electron Scattering 

All dense nuclear phases 
contain electrons. 

DM-electron scattering 
dominates.  

where nF (E) = [1 + e(E−µ)/T
]
−1

is the electron Fermi-Dirac distribution function and θ

is the angle between �p and �p�. In Fig. 5 we show the numerical results obtained from

setting τ ≥ 10
10

years (using (12),(14), and (17)) for the low energy DM-electron cross

section as a function of DM mass. The DM-neutron cross section results are plotted for

comparison. Interestingly, if DM couples with equal strength to neutrons and electrons (i.e.

FIG. 5: Plot of the low energy DM-neutron and DM-electron cross sections as a function of

DM mass. Shaded areas are regions where DM thermalization takes longer than 10
10

years.

if G̃ is fixed), then we find that thermalization times for DM scattering with electrons are

roughly 50% of thermalization times for DM scattering with neutrons, so regardless of the

presence of a superfluid, DM-electron scattering would be the most efficient process for DM

thermalization.

E. Scattering in Exotic Neutron Star Cores

So far we have considered DM thermalization with electrons and also neutrons, both in

the normal phase and in the superfluid phase–however, the phase structure of matter in the

neutron star core remains uncertain [34]. Here, we study two specific phases of high density

matter in order to explore their influence on DM thermalization. At asymptotically large
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unpaired neutrons 
electrons

•Thermalization time will be short compared to the age of the 
neutron star in all phases of dense nuclear matter. 

•Robust because of the existence of a normal dense electron gas. 



Superfluid Phases Without Electrons

• Color Flavor Locked (CFL) Quark Matter

• CFL + Kaon condensed matter 

There are two well motivated phases of quark matter at high 
density that are devoid of electrons  

In these phases the only relevant low-energy degrees of freedom are the 
Goldstone bosons (phonons) - quarks are all gapped.  

vχ < cs
FIG. 6: The different scattering process which contribute to DM thermalization inside a

neutron star. Here χ denotes DM, ψ is a neutron or electron, and φ is a superfluid phonon.

The first diagram shows DM scattering with a non-interacting neutron or electron, the

second diagram is DM scattering with a single phonon, and the third diagram shows DM

scattering with two phonons via a three-phonon vertex.

baryon number current jµ = fh(∂0φ − ch∂iφ) where φ is the overall phase of the condensate

that breaks the U(1)B symmetry and fh � µ is the low energy constant and µ � 400 MeV

is the quark chemical potential in the neutron star core.

For reasons already mentioned for vχ < ch thermalization can only proceed by the two

phonon process shown by third process shown in Fig. 6. Here, kinematics requires that

one of the phonons be in the initial state, and the intermediate phonon is far off-shell when

vχ � ch. The rate for the DM + phonon → DM + phonon process can be estimated, and

we find that the scattering rate for a DM particle of momentum p is approximately given

by

Γ(p) ≈ c23(α/2)
6

8π4 c4h
G̃2 T 5 T 2

f 2
h

T 2

mχ p
, (35)

where the typical energy transfer in the collision is α T , while c3 is the dimensionless constant

the sets the strength of the three phonon vertex of the type c3 (∂0φ)3/f 2
h in the low energy

phonon theory. For typical values, fh � 400 MeV, c3 ∼ 1 and T = 10
6
K and assuming

that G̃ = 1/(100GeV)
2
, from Eq. 35 we find that Γ(p) ≈ 1.3 × 10

36mGeV pMeV yrs, where

mGeV and pMeV are the DM mass in GeV and momentum in MeV, respectively. Thus, we

can conclude that DM will not thermalize even the oldest neutron stars with ages ∼ 10
10

yrs if its core were composed of either the CFL or CFLK
0
phase for reasonable values of

G̃ ≥ 1/(GeV)
2
.
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vχ > cs

one-phonon two-phonon

FIG. 6: The different scattering process which contribute to DM thermalization inside a

neutron star. Here χ denotes DM, ψ is a neutron or electron, and φ is a superfluid phonon.

The first diagram shows DM scattering with a non-interacting neutron or electron, the

second diagram is DM scattering with a single phonon, and the third diagram shows DM

scattering with two phonons via a three-phonon vertex.

baryon number current jµ = fh(∂0φ − ch∂iφ) where φ is the overall phase of the condensate

that breaks the U(1)B symmetry and fh � µ is the low energy constant and µ � 400 MeV

is the quark chemical potential in the neutron star core.

For reasons already mentioned for vχ < ch thermalization can only proceed by the two

phonon process shown by third process shown in Fig. 6. Here, kinematics requires that

one of the phonons be in the initial state, and the intermediate phonon is far off-shell when

vχ � ch. The rate for the DM + phonon → DM + phonon process can be estimated, and

we find that the scattering rate for a DM particle of momentum p is approximately given

by

Γ(p) ≈ c23(α/2)
6

8π4 c4h
G̃2 T 5 T 2

f 2
h

T 2

mχ p
, (35)

where the typical energy transfer in the collision is α T , while c3 is the dimensionless constant

the sets the strength of the three phonon vertex of the type c3 (∂0φ)3/f 2
h in the low energy

phonon theory. For typical values, fh � 400 MeV, c3 ∼ 1 and T = 10
6
K and assuming

that G̃ = 1/(100GeV)
2
, from Eq. 35 we find that Γ(p) ≈ 1.3 × 10

36mGeV pMeV yrs, where

mGeV and pMeV are the DM mass in GeV and momentum in MeV, respectively. Thus, we

can conclude that DM will not thermalize even the oldest neutron stars with ages ∼ 10
10

yrs if its core were composed of either the CFL or CFLK
0
phase for reasonable values of

G̃ ≥ 1/(GeV)
2
.
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Two phonon process is too weak. 

Thermalization in < 1010 yrs is not possible in these exotic phases. 



Conclusions 

• DM scattering in neutron stars is complicated by correlations 
and superfluidity in the dense medium. 

• An improved treatment of DM - scattering in dense matter is 
needed to explore the role of DM in neutron star 
phenomenology.    

• The discovery of Asymmetric bosonic DM in the laboratory 
would favor the existence of an exotic phase in the neutron 
star core. 


